Euclidian Norm, Euclidian Distance, and Angle

Linear Algebra
Department of Computer Engineering
Sharif University of Technology
Hamid R. Rabiee rabiee@sharif.edu
Maryam Ramezani maryam.ramezani@sharif.edu

Overview

Introduction

Inequalities

Euclidean Norm

Euclidean Metric (Distance)

Angle

Introduction

- Machine learning uses vectors, matrices, and tensors as the basic units of representation
- Two reasons to use norms:

1. To estimate how big a vector/matrix/tensor is

- How big is the difference between two tensors is

2. To estimate how close one tensor is to another

- How close is one image to another

- Given an inner product $\langle A, B$, one can obtain a norm doing
|| $A\left|\left.\right|^{2}=<A\right.$, $A>$
- And given a norm
|| A ||, one can obtain a metric using the difference vector || A-B||

Metric spaces

Vector space	Generalization
metric	metric space
norm	normed
scalar product	inner product space

Inner Product

Definition

An inner product <,>, also called dot product, is a function that enables us to define and apply geometrical terms such as length, distance and angle in an Euclidean (vector) space

Let V be a vector space over \mathbb{R}. An inner product on V is a function $\langle\rangle:, V \times V \rightarrow \mathbb{R}$ such that for all $u, v, w \in V$ and $a, b \in \mathbb{R}$, the following hold:

1. $\langle v, v\rangle \geq 0$ and $\langle v, v\rangle=0 \Leftrightarrow v=0$;
2. $\langle a u+b v, w\rangle=a\langle u, w\rangle+b\langle v, w\rangle$;
3. $\langle u, v\rangle=\langle v, u\rangle$.
https://youtu.be/LyGKycYT2v0

Definition

Functions closely related to inner products are so-called norms. Norms are specific functions that can be interpreted as a distance function between a vector and the origin.

Definition

For $v \in V$, we define the norm of v, denoted $\|v\|$, by:

$$
||v||=\sqrt{\langle v, v\rangle}
$$

Example

Norm of $P_{n}(x)$ in the term of inner product $\left\langle p_{n}(x), q_{n}(x)\right\rangle=\int_{0}^{1} p_{n}(x) q_{n}(x) d x$:

$$
\left\|P_{n}(x)\right\|=\sqrt{\int_{0}^{1} P_{n}^{2}(x) d x}
$$

Definition

- Euclidean Norm (2-norm, l_{2} norm, length)

$$
||x||=\sqrt{x_{1}^{2}+x_{2}^{2}+\ldots+x_{n}^{2}}=\sqrt{x^{T} x}
$$

- A vector whose length is 1 is called a unit vector
- Normalizing: divide a non-zero vector by its length which is a unit vector in the same direction of original vector
- It is a nonnegative scalar
- In \mathbb{R}^{2} follows from the Pythagorean Theorem.
- What about \mathbb{R}^{3} ?
- What is the shape of $||x||_{2}=1$?

Inequalities

Chebyshev Inequality

Theorem

Suppose that k of the numbers $\left|x_{1}\right|,\left|x_{2}\right|, \ldots,\left|x_{n}\right|$ are $\geq a$ then k of the numbers $x_{1}^{2}, x_{2}^{2}, \ldots, x_{n}^{2}$ are $\geq a^{2}$ So $\|x\|^{2}=x_{1}^{2}+x_{2}^{2}+\ldots+x_{n}^{2} \geq k a^{2}$ so we have $k \leq \frac{\|x\|^{2}}{a^{2}}$
Number of x_{i} with $\left|x_{i}\right| \geq a$ is no more than $\frac{\|x\|^{2}}{a^{2}}$

Question

- What happens when $\frac{\|x\|^{2}}{a^{2}} \geq n$?
- No entry of a vector can be larger in magnitude than the norm of the vector. (why?)

Cauchy-Schwartz Inequality

Theorem

For two n -vectors a and $b,\left|a^{T} b\right| \leq\|a\|\|b\|$
Written out:

$$
\begin{gathered}
\left|a_{1} b_{1}+\cdots+a_{n} b_{n}\right| \leq\left(a_{1}^{2}+\ldots+a_{n}^{2}\right)^{\frac{1}{2}}\left(b_{1}^{2}+\ldots+b_{n}^{2}\right)^{\frac{1}{2}} \\
\left(\sum_{i=1}^{n} x_{i} y_{i}\right) \leq\left(\sum_{i=1}^{n} x_{i}^{2}\right)\left(\sum_{i=1}^{n} y_{i}^{2}\right)
\end{gathered}
$$

Proof:

Theorem

For two n -vectors a and $b,\left|a^{T} b\right| \leq\|a\|\|b\|$
Written out:

$$
\begin{gathered}
\left|a_{1} b_{1}+\cdots+a_{n} b_{n}\right| \leq\left(a_{1}^{2}+\ldots+a_{n}^{2}\right)^{\frac{1}{2}}\left(b_{1}^{2}+\ldots+b_{n}^{2}\right)^{\frac{1}{2}} \\
\left(\sum_{i=1}^{n} x_{i} y_{i}\right) \leq\left(\sum_{i=1}^{n} x_{i}^{2}\right)\left(\sum_{i=1}^{n} y_{i}^{2}\right)
\end{gathered}
$$

It is clearly true if either a or b is 0 .
So, assume $\alpha=\|a\|$ and $\beta=\|b\|$ are non-zero
We have

Divide by $2||a| \||b||$ to get $a^{T} b \leq \||a|| | b| |$
Apply to $-a, b$ to get other half of Cauchy-Schwartz inequality.
Cauchy-Schwarz inequality holds with equality when one of the vectors is a multiple of the other If and only if a and b are linear dependent

Triangle Inequality

Theorem

Consider a triangle in two or three dimensions:

$$
\|x+y\| \leq\|x\|+\|y\|
$$

Proof:

Triangle Inequality

Theorem

Consider a triangle in two or three dimensions:

$$
\|x+y\| \leq\|x\|+\|y\|
$$

Verification of triangle inequality:

Euclidean Norm

Vector Norm Properties

Important Properties:

1. Absolute Homogenity / Linearity:

$$
\| \alpha x|=|\alpha|||x| \mid
$$

2. Subadditivity / Triangle Inequality:

$$
\|x+y\| \leq\|x\|+||y||
$$

3. Positive definiteness / Point separating:

$$
\begin{aligned}
& \text { if }\|x\|=0 \text { then } x=0 \\
& \text { (from } 1 \& 3 \text {): For every } x,\|x\|=0 \text { iff } x=0
\end{aligned}
$$

4. Non-negativity:

$$
\|x\| \geq 0
$$

Norm of sum

Theorem

If x and y are vectors:

$$
\|x+y\|=\sqrt{|x|\left\|^{2}+2 x^{T} y+\right\| y \|^{2}}
$$

Proof:

$$
\begin{gathered}
\|x+y\|^{2}=(x+y)^{T}(x+y) \\
=x^{T} x+x^{T} y+y^{T} x+y^{T} y \\
=\|x\|^{2}+2 x^{T} y+\|y\|^{2}
\end{gathered}
$$

Theorem

Take any inner product $\langle\cdot, \cdot\rangle$ and define $f(x)=\sqrt{\langle x, x\rangle}$. Then f is a norm.
Proof

Note
Every inner product gives rise to a norm, but not every norm comes from an inner product. (Think about norm 2 and norm max)

Important

Suppose a,b,c are vectors:

$$
\left|\| [\begin{array} { l }
{ a } \\
{ b } \\
{ c }
\end{array}] | ^ { 2 } = a ^ { T } a + b ^ { T } b + c ^ { T } c = \| a \left\|^{2}+\left|\left|b \|^{2}+||c||^{2}\right.\right.\right.\right.
$$

So, we have

$$
\left|\left\|[\begin{array} { l }
{ a } \\
{ b } \\
{ c }
\end{array}] \left|\left|=\sqrt{\left|\left|a \left\|^{2}+\left||b|^{2}+\| c\right|^{2}\right.\right.\right.}=\left|\|\left[\begin{array}{l}
|a| \mid \\
\| b| | \\
\| c| |
\end{array}\right]\right|\right.\right.\right.\right.
$$

(Parse RHS very carefully!)

* The norm of a stacked vector is the norm of the vector formed from the norms of sub-vectors.

Euclidean Metric (Distance)

Important Properties:
Let V be a real vector space over \mathbb{R}. A function $V \times V \rightarrow \mathbb{R}$ is called metric or distance function on V, and (V, R) a metric space, if for all $u, v, w \in V$ the following holds true:
(i) $d(v, w) \geq 0$ and $d(v, w)=0$ if and only if $v=w$;
(ii) $d(v, w)=d(v, w)$;
(iii) $d(v, w) \leq d(v, u)+d(u, w)$.

Euclidean Distance

Distance between two n-vectors shows the vectors are "close" or "nearby" or "far".

Distance:

$$
\operatorname{dist}(a, b)=\| a-b| |
$$

Comparing Norm and Distance

Norm

Distance Function

(Normed Linear Space)
(Metric Space)

1. $||x-y|| \geq 0$
2. $||x-y||=0 \Rightarrow x=y$
3. $||\lambda(x-y)||=|\lambda|| | x-y| |$
4. $\operatorname{dist}(x, y) \geq 0$
5. $\operatorname{dist}(x, y)=0 \Rightarrow x=y$
6. $\operatorname{dist}(x, y)=\operatorname{dist}(y, x)$

Feature Distance and Nearest Neighbors:

if x, y are feature vectors for two entities, $\|x-y\|$ is the feature distance if $z_{1}, z_{2}, \ldots, z_{m}$ is a list of vectors, z_{j} is the nearest neighbor of x if:

$$
\left|\left|x-z_{j}\right|\right| \leq\left\|x-z_{i}\right\|, \quad i=1,2, \ldots, m
$$

Angle

Definition

Angle between two non-zero vectors a, b is defined as:

$$
\angle(a, b)=\arccos \left(\frac{a^{T} b}{\|a|\|\mid b\|}\right)
$$

$\angle(a, b)$ is the number in $[0, \pi]$ that satisfies:

$$
a^{T} b=\|a\|\|b\| \cos (\angle(a, b))
$$

Coincides with ordinary angle between vectors in 2D and 3D

Spherical distance:

if a, b are on sphere with radius R, distance along the sphere is $R \angle(a, b)$

- Chapter 1: Advanced Linear and Matrix Algebra, Nathaniel Johnston
- Chapter 6: Linear Algebra David Cherney
- Linear Algebra and Optimization for Machine Learning
- Introduction to Applied Linear Algebra Vectors, Matrices, and Least Squares

